Jacquet modules for semisimple Lie groups having Verma module filtrations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtrations in Semisimple Lie Algebras, III

This is the third in a series of papers. The first two, by Yiftach Barnea and this author, study the maximal bounded Z-filtrations of the finitedimensional simple Lie algebras over the complex numbers. Those papers obtain a complete characterization for all but the five exceptional Lie algebras, namely the ones of type G2, F4, E6, E7 and E8. Here, we fill in the missing step for the algebra G2....

متن کامل

Filtrations in Semisimple Lie Algebras, I

In this paper, we study the maximal bounded Z-filtrations of a complex semisimple Lie algebra L. Specifically, we show that if L is simple of classical type An, Bn, Cn or Dn, then these filtrations correspond uniquely to a precise set of linear functionals on its root space. We obtain partial, but not definitive, results in this direction for the remaining exceptional algebras. Maximal bounded ...

متن کامل

Filtrations in Semisimple Lie Algebras, Ii

In this paper, we continue our study of the maximal bounded Z-filtrations of a complex semisimple Lie algebra L. Specifically, we discuss the functionals which give rise to such filtrations, and we show that they are related to certain semisimple subalgebras of L of full rank. In this way, we determine the “order” of these functionals and count them without the aid of computer computations. The...

متن کامل

2-step Nilpotent Lie Groups Arising from Semisimple Modules

Let G0 denote a compact semisimple Lie algebra and U a finite dimensional real G0 module. The vector space N0 = U ⊕ G0 admits a canonical 2-step nilpotent Lie algebra structure with [N0,N0] = G0 and an inner product 〈, 〉, unique up to scaling, for which the elements of G0 are skew symmetric derivations of N0. Let N0 denote the corresponding simply connected 2-step nilpotent Lie group with Lie a...

متن کامل

D-modules and Characters of Semisimple Lie Groups

A famous theorem of Harish-Chandra asserts that all invariant eigendistributions on a semisimple Lie group are locally integrable functions. We show that this result and its extension to symmetric pairs are consequences of an algebraic property of a holonomic D-module defined by Hotta and Kashiwara.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1991

ISSN: 0021-8693

DOI: 10.1016/0021-8693(91)90051-9